
  

Mathematical Induction
Part Two



  

Outline for Today

● Variations on Induction
● Starting later, taking diferent step sizes, and 

more!
● “Build Up” versus “Build Down”

● An inductive nuance that follows from our 
general proofwriting principles.

● Complete Induction
● When one assumption isn’t enough!



  

Recap from Last Time



  

Let P be some predicate. The principle of mathematical 
induction states that if

P(0) is true

and

∀k ∈ ℕ. (P(k) → P(k+1))

then

∀n ∈ ℕ. P(n)

If it starts 
true…

…and it stays 
true…

…then it's 
always true.



  

Try It!

Starting with MI, apply these
operations to make MU:

(a) Double the string after an M.

(b) Replace III with U.

(c) Append U, if the string ends in I.

(d) Delete UU from the string.

(a) Double the string after an M.

(b) Replace III with U.

(c) Append U, if the string ends in I.

(d) Delete UU from the string.



  

Not a single person in this room 
was able to solve this puzzle.

 

Are we even sure that there is a solution?



  

7

MI

MII

MIIII

MIIIIU

MIIIIUIIIIU

MIIIIUUIU

MIIIIUUIUIIIIUUIU

1

2

4

4

8

5

10

MUIUUIUIIIIUUIU

Counting I's



  

The Key Insight

● Initially, the number of I's is not a 
multiple of three.

● To make MU, the number of I's must end 
up as a multiple of three.

● Can we ever make the number of I's a 
multiple of three?



  

Lemma 1: If n is an integer that is not a multiple of three,
then n – 3 is not a multiple of three.

Proof: By contrapositive; we'll prove that if n – 3 is a multiple
of three, then n is also a multiple of three. Because n – 3 is
a multiple of three, we can write n – 3 = 3k for some
integer k. Then n = 3(k+1), so n is also a multiple of three,
as required. ■

Lemma 2: If n is an integer that is not a multiple of three,
then 2n is not a multiple of three.

Proof: Let n be a number that isn't a multiple of three. If n is
congruent to one modulo three, then n = 3k + 1 for some
integer k. This means 2n = 2(3k+1) = 6k + 2 = 3(3k) + 2,
so 2n is not a multiple of three. Otherwise, n must be
congruent to two modulo three, so n = 3k + 2 for some
integer k. Then 2n = 2(3k+2) = 6k+4 = 3(2k+1) + 1, and
so 2n is not a multiple of three. ■



  

Lemma: No matter which moves are made, the number of I's in the string
   never becomes multiple of three.

Proof: Let P(n) be the statement “after any n moves, the number of I's in
   the string will not be multiple of three.” We will prove, by induction, that
   P(n) is true for all n ∈ ℕ, from which the theorem follows.

As a base case, we'll prove P(0), that the number of I's after 0 moves is 
not a multiple of three. After no moves, the string is MI, which has one I in 
it. Since one isn't a multiple of three, P(0) is true.

For our inductive step, suppose that P(k) is true for some arbitrary k ∈ ℕ.
We'll prove P(k+1) is also true. Consider any sequence of k+1 moves. Let 
r be the number of I's in the string after the kth move. By our inductive 
hypothesis (that is, P(k)), we know that r is not a multiple of three. Now, 
consider the four possible choices for the k+1st move:

 Case 1: Double the string after the M. After this, we will have 2r I's
   in the string, and from our lemma 2r isn't a multiple of three.

 Case 2: Replace III with U. After this, we will have r – 3 I's in the string,
         and by our lemma r – 3 is not a multiple of three.

 Case 3: Either append U or delete UU. This preserves the number of
    I's in the string, so we don't have a multiple of three I's at this point.

Therefore, no sequence of k+1 moves ends with a multiple of three I's. 
Thus P(k+1) is true, completing the induction. ■



  

Theorem: The MU puzzle has no solution.
 

Proof: Assume for the sake of contradiction that the MU
puzzle has a solution and that we can convert MI to
MU. This would mean that at the very end, the number
of I's in the string must be zero, which is a multiple of
three. However, we've just proven that the number of
I's in the string can never be a multiple of three.

We have reached a contradiction, so our assumption
must have been wrong. Thus the MU puzzle has no
solution. ■



  

Algorithms and Loop Invariants

● The proof we just made had the form
● “If P is true before we perform an action, it is true 

after we perform an action.”
● We could therefore conclude that after any series 

of actions of any length, if P was true beforehand, 
it is true now.

● In algorithmic analysis, this is called a loop 
invariant.

● Proofs on algorithms often use loop invariants to 
reason about the behavior of algorithms.
● Take CS161 for more details!



  

New Stuf!



  

Variations on Induction: Starting Later



  

Induction Starting at 0

● To prove that P(n) is true for all natural 
numbers greater than or equal to 0: 
● Show that P(0) is true. 
● Show that for any k ≥ 0, that 

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers 

greater than or equal to 0. 



  

Induction Starting at m

● To prove that P(n) is true for all natural 
numbers greater than or equal to m: 
● Show that P(m) is true. 
● Show that for any k ≥ m, that 

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers 

greater than or equal to m. 



  

Variations on Induction: Bigger Steps



  

Subdividing a Square



  

Subdividing a Square

These regions 
aren’t squares.
These regions 
aren’t squares.



  

Subdividing a Square

Squares can’t 
overlap or hang 
of the fgure.

Squares can’t 
overlap or hang 
of the fgure.



  

For what values of n can a square be 
subdivided into n squares?



  

An Insight



  

An Insight



  

An Insight

● If we can subdivide a square into n squares, we 
can also subdivide it into n + 3 squares.

● Since we can subdivide a bigger square into 6, 7, 
and 8 squares, we can subdivide a square into n 
squares for any n ≥ 6:

● For multiples of three, start with 6 and keep adding 
three squares until n is reached.

● For numbers congruent to one modulo three, start 
with 7 and keep adding three squares until n is 
reached.

● For numbers congruent to two modulo three, start 
with 8 and keep adding three squares until n is 
reached.



  

Theorem: For any n ≥ 6, there is a way to subdivide a square into
n smaller squares.

Proof: Let P(n) be the statement “there is a way to subdivide a
square into n smaller squares.” We will prove by induction that
P(n) holds for all n ≥ 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square
can be subdivided into 6, 7, and 8 squares. This is shown here:

 
For the inductive step, assume that for some arbitrary k ≥ 6
that P(k) is true and that there is a way to subdivide a square
into k squares. We prove P(k+3), that there is a way to
subdivide a square into k+3 squares. To see this, start by
obtaining (via the inductive hypothesis) a subdivision of a
square into k squares. Then, choose any of the squares and split
it into four equal squares. This removes one of the k squares
and adds four more, so there will be a net total of k+3 squares.
Thus P(k+3) holds, completing the induction. ■
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Generalizing Induction
● When doing a proof by induction,

● feel free to use multiple base cases, and
● feel free to take steps of sizes other than one.

● If you do, make sure that…
● … you actually need all your base cases. Avoid redundant 

base cases that are already covered by a mix of other base 
cases and your inductive step.

● … you cover all the numbers you need to cover. Trace out 
your reasoning and make sure all the numbers you need 
to cover really are covered.

● As with a proof by cases, you don’t need to 
separately prove you’ve covered all the options. We 
trust you. 



  

More on Square Subdivisions

● There are a ton of interesting questions 
that come up when trying to subdivide a 
rectangle or square into smaller squares.

● In fact, one of the major players in early 
graph theory (William Tutte) got his start 
playing around with these problems.

● Good starting resource: this Numberphile 
video on Squaring the Square.

https://www.youtube.com/watch?v=NoRjwZomUK0&feature=youtu.be


  

An Observation



  

Start with 
larger graph

Get to smaller 
graph

Start with
fewer squares

Get to more 
squares



  

Following the Rules

● When working with square subdivisions, our 
predicate looked like this:

P(n) is “there exists a way to subdivide
a square into n squares.”

● When working with Ramsey theory, our predicate 
looked like this:

P(n) is “for any coloring of a K3n!,
there is a monochrome K₃.”

● With squares, the quantifer is ∃. With graphs, the 
frst quantifer is ∀..

● This fundamentally changes the “feel” of induction.



  

Build Up with ∃

● In the case of squares, in our inductive step, we prove

If

    there exists a subdivision into k squares,

then

    there exists a subdivision into k+3 squares.

● Assuming the antecedent gives us a concrete subdivision 
into k squares.

● Proving the consequent means fnding some way to 
subdivide in to k+3 squares.

● The inductive step goal is to “build up:” start with a smaller 
number of squares, and somehow work out what to do to get 
a larger number of squares.



  

Build Down with ∀.

● In the Ramsey case, in our inductive step, we prove

If

    for all colorings of K3r!, there’s a monochrome K₃.

then

    for all colorings of K3(r+1)!, there’s a monochrome K₃.

● Assuming the antecedent means once we fnd an r-colored 
K3r!, we get a monochrome K₃.

● Proving the consequent means picking an arbitrary coloring 
of K3(r+1)!, then trying to fnd a monochrome K₃ in it.

● The inductive step goal is to “build down:” start with a 
larger graph, then fnd a way to turn it into a smaller graph.



  

Some Notes

● Not all predicates P(n) will have the form 
outlined here.
● That’s okay! Just use the normal rules for 

assuming and proving things.
● Think of these as quick shorthands rather than 

fundamentally new strategies. 
● In all cases, assume P(k) and prove P(k+1).

● All that changes is what you do to assume P(k) 
and what you do to prove P(k+1).



  

Time-Out for Announcements!



  

Problem Set Five

● Problem Set Four was due at 4:00PM today.
● You can use a late day to extend the deadline to Saturday at 

4:00PM. Remember that you can use at most one late day 
per problem set.

● Problem Set Five goes out today. It’s due next Friday 
at 4:00PM.
● Play around with everything we’ve covered so far, plus a 

healthy dose of induction and inductive problem-solving.
● Before starting, read our “Guide to Induction” and 

“Induction Proofwriting Checklist,” which cover 
common and important cases to look for.

● As always, ping us if you have any questions! That’s 
what we’re here for.



  

Back to CS103!



  

Complete Induction



  

If you are the leftmost person
in your row, stand up right now.

Everyone else: stand up as soon as the 
person to your left in your row stands up.

This is kinda
like P(0).

This is kinda
like P(0).

This is kinda like 
P(k)  → P(k+1).

This is kinda like 
P(k)  → P(k+1).



  

If you are the leftmost person
in your row, stand up right now.

Everyone else: stand up as soon as 
everyone left of you in your row stands up.

This is kinda
like P(0).

This is kinda
like P(0).

What sort of 
sorcery is this?

What sort of 
sorcery is this?



  

Let P be some predicate. The principle of complete 
induction states that if

P(0) is true

and

for all k ∈ ℕ, if P(0), …, and P(k) are true,
then P(k+1) is true

then

∀n ∈ ℕ. P(n)

If it starts 
true…

…and it stays 
true…

…then it's 
always true.



  

Mathematical Induction

● You can write proofs using the principle 
of mathematical induction as follows: 
● Defne some predicate P(n) to prove by 

induction on n.
● Choose and prove a base case (probably, but 

not always, P(0)).
● Pick an arbitrary k ∈ ℕ and assume that

P(k) is true. 
● Prove P(k+1).
● Conclude that P(n) holds for all n ∈ ℕ.



  

Complete Induction

● You can write proofs using the principle 
of complete induction as follows:
● Defne some predicate P(n) to prove by 

induction on n.
● Choose and prove a base case (probably, but 

not always, P(0)).
● Pick an arbitrary k ∈ ℕ and assume that 

P(0), P(1), P(2), …, and P(k) are all true.
● Prove P(k+1).
● Conclude that P(n) holds for all n ∈ ℕ.



  

An Example: Eating a Chocolate Bar



  

Eating a Chocolate Bar

● You have a 1 × n chocolate bar subdivided 
into 1 × 1 squares.

● You eat the chocolate bar from left to right 
by breaking of one or more squares and 
eating them in one (possibly enormous) bite.

● How many ways can you eat a…
● 1 × 1 chocolate bar?
● 1 × 2 chocolate bar?
● 1 × 3 chocolate bar?
● 1 × 4 chocolate bar?



  There are eight ways to eat a 1 × 4 chocolate bar.



  There are eight ways to eat a 1 × 4 chocolate bar.

If you eat one piece 
frst,  you then eat 
the remaining 1 × 3 

chocolate bar any way 
you’d like.

If you eat one piece 
frst,  you then eat 
the remaining 1 × 3 

chocolate bar any way 
you’d like.



  There are eight ways to eat a 1 × 4 chocolate bar.

If you eat two pieces 
frst,  you then eat 
the remaining 1 × 2 
chocolate bar any way 

you’d like.

If you eat two pieces 
frst,  you then eat 
the remaining 1 × 2 
chocolate bar any way 

you’d like.



  There are eight ways to eat a 1 × 4 chocolate bar.

If you eat three 
pieces frst,  you then 
eat the remaining 1 × 
1 chocolate bar any 

way you’d like.

If you eat three 
pieces frst,  you then 
eat the remaining 1 × 
1 chocolate bar any 

way you’d like.



  There are eight ways to eat a 1 × 4 chocolate bar.

Or you could eat the 
whole chocolate bar at 
once. Ah,  gluttony. 

Or you could eat the 
whole chocolate bar at 
once. Ah,  gluttony. 



  

Eating a Chocolate Bar

● There’s…
● 1 way to eat a 1 × 1 chocolate bar,
● 2 ways to eat a 1 × 2 chocolate bar,
● 4 ways to eat a 1 × 3 chocolate bar, and
● 8 ways to eat a 1 × 4 chocolate bar.

● Our guess: There are 2n – 1 ways to eat a 1 × n 
chocolate bar for any natural number n ≥ 1.

● And we think it has something to do with this insight: 
we eat the bar either by
● eating the whole thing in one bite, or
● eating some piece of size k, then eating the remaining n – k 

pieces however we’d like.
● Let’s formalize this!



  

Theorem: For any natural number n ≥ 1, the number of ways to eat a 1 × n
chocolate bar from left to right is 2n – 1.

Proof: Let P(n) be “the number of ways to eat a 1 × n chocolate bar from left
to right is 2n – 1.” We will prove by induction that P(n) holds for all natural
numbers n ≥ 1, from which the theorem follows.

As our base case, we prove P(1), that the number of ways to eat a 1 × 1 
chocolate bar from left to right is 21 – 1 = 1. The only option here is to eat
the entire chocolate bar at once, so there’s just one way to eat it, as 
needed.

For our inductive step, assume for some arbitrary natural number k ≥ 1 
that P(1), …, and P(k) are true. We need to show P(k+1) is true, that the 
number of ways to eat a 1 × (k+1) chocolate bar is 2k.

There are two options for how to eat the bar. First, we can eat the whole
chocolate bar in one bite. Second, we could eat a piece of size r for some
1 ≤ r ≤ k, leaving a chocolate bar of size k+1–r, then eat that chocolate
bar from left to right. Since 1 ≤ r ≤ k, we know that 1 ≤ k+1–r ≤ k, so by
our inductive hypothesis there are 2k – r ways to eat the remainder.

Summing up this frst option, plus all choices of r for the second option,
we see that the number of ways to eat the chocolate bar is

1 + 20 + 21 + … + 2k – 1    =    1 + 2k – 1    =    2k.

Thus P(k+1) holds, completing the induction. ■



  

More on Chocolate Bars

● Imagine you have an m × n chocolate bar. 
Whenever you eat a square, you have to eat all 
squares above it and to the left.

● How many ways are there to eat the chocolate bar? 

 

 

 

● Open Problem: Find a non-recursive exact formula 
for this number, or give an approximation whose 
error drops to zero as m and n tend toward infnity.



  

Induction vs. Complete Induction

I can solve
smaller versions
of the problem

I can solve
bigger versions
of the problem



  

Induction vs. Complete Induction

Regular
Induction

Complete 
Induction



  

Induction vs. Complete Induction

Exactly k
squares

Exactly k+3
squares

Regular
Induction

Bars with
fewer than
k squares

A bar with
exactly k+1

squares

Complete 
Induction



  

Induction vs. Complete Induction

Exactly k
squares

Exactly k+3
squares

Regular
Induction

Bars with
fewer than
k squares

A bar with
exactly k+1

squares

Complete 
InductionRegular induction is 

great when you know 
exactly how much 

smaller your “smaller” 
problem instance is.

Regular induction is 
great when you know 
exactly how much 

smaller your “smaller” 
problem instance is.



  

Induction vs. Complete Induction

Exactly k
squares

Exactly k+3
squares

Regular
Induction

Bars with
fewer than
k squares

A bar with
exactly k+1

squares

Complete 
Induction

Complete induction is 
great when you know 

things get smaller,  but 
you’re not sure by how 

much.

Complete induction is 
great when you know 

things get smaller,  but 
you’re not sure by how 

much.



  

How Not To Induct, Part 2



  

 ⚠ Incorrect!  ⚠ Proof: Let P(n) be the statement “all groups of n 
horses are the same color.” We will prove by induction that P(n) holds 
for all natural numbers n, from which the theorem follows.

As our base case, we prove P(0), that all groups of 0 horses are the 
same color. This statement is vacuously true because there are no 
horses. 

For the inductive step, assume that for an arbitrary natural number k 
that P(k) is true and that all groups of k horses are the same color. Now 
consider a group of k+1 horses. Exclude the last horse and look only at 
the frst k horses. By the inductive hypothesis, these horses are the 
same color. Next, exclude the frst horse and look only at the last k 
horses. Again we see by the inductive hypothesis that these horses are 
the same color. 

Therefore, the frst horse is the same color as the non-excluded horses, 
who in turn are the same color as the last horse. Hence the frst horse 
excluded, the non-excluded horses, and last horse excluded are all of 
the same color. Thus P(k+1) holds, completing the induction. ■

What’s wrong with this proof?What’s wrong with this proof?



  

 ⚠ Incorrect!  ⚠ Proof: Let P(n) be the statement “all groups of n 
horses are the same color.” We will prove by induction that P(n) holds 
for all natural numbers n, from which the theorem follows.

As our base case, we prove P(0), that all groups of 0 horses are the 
same color. This statement is vacuously true because there are no 
horses. 

For the inductive step, assume that for an arbitrary natural number k 
that P(k) is true and that all groups of k horses are the same color. Now 
consider a group of k+1 horses. Exclude the last horse and look only at 
the frst k horses. By the inductive hypothesis, these horses are the 
same color. Next, exclude the frst horse and look only at the last k 
horses. Again we see by the inductive hypothesis that these horses are 
the same color. 

Therefore, the frst horse is the same color as the non-excluded horses, 
who in turn are the same color as the last horse. Hence the frst horse 
excluded, the non-excluded horses, and last horse excluded are all of 
the same color. Thus P(k+1) holds, completing the induction. ■

The logic in our inductive step does 
not allow us to get from P(1) to 
P(2). Specifcally,  there are no 

non-excluded horses that were in 
both sets.

The logic in our inductive step does 
not allow us to get from P(1) to 
P(2). Specifcally,  there are no 

non-excluded horses that were in 
both sets.



  

Non-Issues with this Proof
● “We should have proven additional base cases” 

● A proof by induction only needs a single base 
case, so the fact that we only have one here 
is not in itself an issue. 

● “We should have used complete induction” 
● Complete induction wouldn’t have helped us 

here either, since our inductive step would 
still need to use P(0) and P(1) to prove P(2).



  

Induction Debugging Tips
● Remember that induction requires two parts: the 

base case and the inductive step. 
● If you see an induction proof of a false statement, 

one of these pieces must be broken.
● Recommendation: try playing the induction out 

one step at a time (Is the base case true? From 
the base case, does the reasoning in your 
inductive step allow you to conclude the next 
statement? What about the following statement? 
etc… ) 



  

An Important Milestone



  

Recap: Discrete Mathematics

● The past fve weeks have focused exclusively 
on discrete mathematics:

Induction    Functions

Graphs      The Pigeonhole Principle

Formal Proofs   Mathematical Logic

Set Theory   
● These are building blocks we will use 

throughout the rest of the quarter.
● These are building blocks you will use 

throughout the rest of your CS career.



  

Three Questions

● What is something you know now that, at 
the start of the quarter, you knew you 
didn’t know?

● What is something you know now that, at 
the start of the quarter, you didn’t know 
that you didn’t know?

● What is something you don’t know that, 
at the start of the quarter, you didn’t 
know that you didn’t know?



  

Next Up: Computability Theory

● It's time to switch gears and address the limits 
of what can be computed.

● We'll explore these questions:
● How do we model computation itself?
● What exactly is a computing device?
● What problems can be solved by computers?
● What problems can't be solved by computers?

● Get ready to explore the boundaries of 
what computers could ever be made to do.



  

Next Time

● Formal Language Theory
● How are we going to formally model 

computation?
● Finite Automata

● A simple but powerful computing device 
made entirely of math!

● DFAs
● A fundamental building block in computing.
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